

- Ideal for applications where Electromagnetic Interference (EMI) protection or Electromagnetic Compatibility (EMC) is needed.
- IP 68 rated.
- Nickel-plated finish over brass provides excellent corrosion resistance and durability.
- Excellent 360° shield contact with contact sleeve due to braided shield which runs into the gland.
- Combination of the sealing insert and the contact socket guarantees a constant contact quality with minimal transfer impedance.
- Inner cable protection.
- Long thread for use in standard or thick panels.
- Multiple sizes for flexible cord diameters ranging from .177" (4,5 mm) to $1.003^{\prime \prime}(25,5 \mathrm{~mm})$.
- For use in clearance or threaded holes.
- Cordgrips are made of nickel plated brass and the gland is made of TPE.
- EMC locknuts available. See page 3-41.
- DFARS Compliant

Heyco ${ }^{\text {- }}$-Tite EMC Brass Liquid Tight Cordgrips

Straight Thru, PG Hubs
EMC Nickel-Plated Brass with Contact Sleeve
The Ultimate in Liquid Tight Strain Relief Protection

CABLE DIA. RANGE				$\begin{aligned} & \text { PART } \\ & \text { NO. } \end{aligned}$	$\begin{gathered} \text { THREAD } \\ \text { SIZE } \end{gathered}$	(14) or 〇	PART DIMENSIONS							
Minim	$u m$	Maximum					Clea Hole	ance Dia.		O.A. th			Wren Fla	ng Nut ize
in.	mm .	in.					in.	mm.	in.	mm .	in.	mm .	in.	mm.
Standard Thread														
$\begin{aligned} & .177 \\ & .236 \end{aligned}$	$\begin{aligned} & 4,5 \\ & 6,0 \end{aligned}$.236 .295	$\begin{aligned} & 6,0 \\ & 7,5 \end{aligned}$	$\begin{aligned} & 4600 \\ & 4641 \end{aligned}$	PG7	${ }_{\mathrm{c}} \mathrm{NS}_{\text {us }}$. 492	12,5	1.06	27,0	. 39	10,0	. 59	15,0
. 236	6,0	. 315	8,0	4644	PG9	${ }_{c} \mathbb{N}_{\text {us }}$. 598	15,2	1.18	30,0	39	10,0	71	18,0
. 315	8,0	. 394	10,0	4645	PG9	${ }_{c} \mathrm{NS}_{\text {us }}$. 598	15,2	1.26	32,0	. 39	10,0	. 71	18,0
. 217	5,5	. 335	8,5	4647	PG11	${ }_{c} \mathbf{N N}_{\text {us }}$. 732	18,6	1.22	31,0	. 39	10,0	. 83	21,0
. 335	8,5	. 472	12,0	4648										
. 315	8,0	. 433	11,0	4650	PG13.5	${ }_{c}{ }^{\text {Nus }}$. 803	20,4	1.22	31,0	. 39	10,0	. 94	24,0
. 433	11,0	. 551	14,0	4651	PG13.5	${ }_{c} \mathrm{NN}_{\text {us }}$. 803	20,4	1.30	33,0				
. 315	8,0	. 433	11,0	4653	$\begin{aligned} & \text { PG16 } \\ & \text { PG16 } \end{aligned}$	$\begin{aligned} & c \boldsymbol{N}_{u s} \\ & c \boldsymbol{N}_{u s} \end{aligned}$. 886	22,5	1.22	31,0	. 39	10,0	. 94	24,0
. 433	11,0	. 551	14,0	4654			. 886	22,5	1.30	33,0				
. 512	13,0	. 630	16,0	4656	PG21	${ }^{\text {che }}$	1.114	28,3	1.45	37,0	47		1.18	
. 630	16,0	. 748	19,0	4657	PG21	${ }_{c} \mathbf{N s}_{\text {us }}$	1.114	28,3	1.57	40,0	. 47	12,0	1.18	30,0
. 748	19,0	. 906	23,0	4659	PG29	${ }_{c} \mathrm{NS}_{\text {us }}$	1.469	37,3	1.61	41,0	. 47	12,0	1.50	38,0
. 906	23,0	1.003	25,5	4660										
Short Thread														
. 177	4,5	. 236	6,0	14640	PG 7	${ }_{c} \mathrm{NB}_{\text {us }}$. 492	12,5	. 91	23,0	. 24	6,0	. 59	15,0
. 236	6,0	. 295	7,5	14641										
. 236	6,0	. 315	8,0	14644	PG 9	${ }_{c} \mathrm{~N}_{\text {us }}$. 598	15,2	1.02	26,0	24	6,0	71	18,0
. 315	8,0	. 394	10,0	14645	PG 9	${ }_{c} \boldsymbol{N}_{\text {us }}$. 598	15,2	1.10	28,0	. 24	6,0	. 71	18,0
. 217	5,5	. 335	8,5	14647	PG 11	$\begin{aligned} & c \boldsymbol{\lambda} \boldsymbol{N}_{u s} \\ & c \mathbf{N} \boldsymbol{N}_{u s} \end{aligned}$. 732	18,6	1.06	27,0	. 24	6,0	. 83	21,0
. 335	8,5	. 472	12,0	14648										
. 315	8,0	. 433	11,0	14650	PG 13.5	${ }_{c} \mathrm{TN}_{\text {us }}$. 803	20,4	1.06	27,0	. 24	6,0	. 94	24,0
. 433	11,0	. 551	14,0	14651	PG 13.5	${ }_{c} \mathrm{NS}_{\text {us }}$. 803	20,4	1.14	29,0				
. 315	8,0	. 433	11,0	14653	PG 16		. 886	22,5	1.06	27,0	. 24	6,0	. 94	24,0
. 433	11,0	. 551	14,0	14654	PG 16		. 886	22,5	1.14	29,0				
. 512	13,0	. 630	16,0	14656	PG 21	${ }_{c} \boldsymbol{N}_{\text {us }}$	1.114	28,3	1.28	32,5	. 30	7,5	1.18	30,0
. 630	16,0	. 748	19,0	14657	PG 21	${ }_{c}{ }^{\text {¢ }}$	1.114	28,3	1.40	35,5				
. 748	19,0	. 906	23,0	14659	PG 29	${ }_{c} \mathrm{NB}_{\text {us }}$	1.469	37,3	1.47	37,0	. 31	8,0	1.50	38,0
. 906	23,0	1.003	25,5	14660										

